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Abstract 

Second-order nonlinear models have been increasingly used in recent years to model 

nonlinear processes in offshore engineering. We develop convenient analytic formulae 

to predict the nonlinearities in waves and to predict the crest height distribution in 

a specified wave condition. We apply such models to study the properties of ran- 

dom ocean waves. These include measured waves both in wave tanks and in field. 

Statistics comparison between model and measurements include: moment compar- 

isons, comparison of distributions of wave elevations, crest heights, wave heights, and 

condititional distributions of local wave parameters, for example, crest height given 

wave heights, wave periods given crest heights, among others. _ 

We find the second-order model predictions to agree quite closely with the field 

measurements, while the wave tank statistics seem to be underpredicted by the 
second-order model. 

Finally, we solve the inverse problem, in which we identify the underlying first- 

order wave components, which when run through the second-order wave predictor 

matches the measured wave histories time point by time point. 
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Chapter 1 

Prediction of Second-Order Waves 

1.1    Introduction 

Nonlinear hydrodynamic effects are of growing interest for ocean structures and ves- 

sels. Here we study such effects in one of the most fundamental nonlinearities in 

ocean engineering: the wave elevation -q(t) at a fixed spatial location. 

It is common practice to model r)(t) using linear wave theory, which results in a 

Gaussian model of r)(t). This ignores the marked asymmetry in the waves: wave crests 

that systematically exceed the neighboring troughs. Such an asymmetry increases 

with decreasing water depth. This asymmetry has several practical implications, for 

example: (1) asymmetric waves are more likely to strike decks on offshore platforms, 

particularly older Gulf-of-Mexico structures designed with fairly low decks; and (2) 

unusually large dynamic structural responses have been found in high, steep waves 

that may not follow linear wave theory. 

Second-order random wave models are not new; indeed, they have been a research 

topic for more than 30 years (e.g., [1,4,6,7,12,13,19,21,22,27]) and remain so today 
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(e.g., [5,16,25,28]). However, they have not entered common offshore engineering 

practice, which applies either random linear (Gaussian) waves, or regular waves that 

fail to preserve Sv(u), the wave power spectrum. Several drawbacks to second-order 

random waves may be suggested: (1) they may be inaccurate, for example due to 

their neglect of higher-order effects; and (2) convenient statistical analysis methods 

for second-order models are often lacking. We seek to consider both concerns here 

— the first through comparison of theory with various wave tank and ocean wave 

measurements. The second issue is addressed by fitting new analytical results for 

wave moments, and studying the accuracy of using these to construct simple Hermite 

models of extreme crests. 

Note that this study is part of the doctoral studies of the author and this report 

has largely been adapted from the author's thesis [9]. 

1.2    Wave Model 

Second-order Volterra models [18] have come under increasing use for modeling non- 

linear random processes in offshore engineering (e.g. [20,26,30]). 7)(t) is accordingly 

modeled as the sum of a linear (Gaussian) process r)i(t) plus a second-order correction 

772 (i) from the nonlinear hydrodynamic problem associated with waves. 

v(t) = m(t) + Th(t) (1.1) 

Before presenting the details of the model, we show the low, mid, and high fre- 

quency components of a measured wave tank history in Fig. 1.1 to demonstrate the 

presence of potential second-order effects in waves. This history is from wave mea- 

surements taken during the Snorre Tension-Leg Platform (TLP) model tests [14]. 
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The waves have been measured without the structure in the tank. More details of 

these wave tank histories are presented in Sec. 1.3. The significant wave height Hs is 

14.1m and the spectral peak period Tp is 13.75 seconds. For this example, we chose 

the mid-frequency component around the spectral peak of the measured history, from 

0.025 Hz to 0.14 Hz. The upper bound of 0.14 Hz is chosen to be a little smaller than 

twice the peak spectral frequency where we expect to see the most dominant second- 

order wave contribution. The range below 0.025 Hz represents the low-frequency 

component and the range above 0.14 Hz represents the high-frequency range, in this 

example. Fig. 1.1 shows that while the low and high frequency components have 

small energies (standard deviations) as compared to the mid-frequency component, 

the three components seem to be phase-locked, a phenomenon which would not be 

seen in a linear process. This observation supports the modeling of the waves as at 

least a second-order process. 

For the second-order r)(t) in Eqn. 1.1, the standard Fourier sum for the linear part 

Vi(t) is 
N N 

Vi(t) = T,A>> cos(ukt + 0k) = Re £ C* exp(iukt) (1.2) 

in which Re indicates the real part of a complex number, and Ck = Ak exp(i$k) are 

the complex Fourier amplitudes, defined in terms of Rayleigh distributed amplitudes 

Ak, and uniformly distributed phases 0k. The Cks are mutually independent of one 

another. The mean-square value of Ak is 

E[A2
k] = 2Sv{u)k)duk;       duk = uk- u)k-X (1.3) 

Based on Volterra theory [18], second-order corrections are induced at the sums 
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Figure 1.1:  Low, Mid, and High frequency components of measured wave history 
demonstrating presence of phase-locking and potential second-order effects 

and differences of all wave frequencies contained in r]i(t): 

m(t) = Re E E CmCn [tf+ne^+^ + H-ne>^-»»*] (1.4) 

In general, the functions if+n and H~n are known as quadratic transfer functions 

(QTFs), evaluated at the frequency pair (u;m,wn).  Similar expressions arise in de- 

scribing second-order diffraction loads of floating structures [10]; in this case the 

QTFs are calculated numerically from nonlinear diffraction analysis (e.g., [26]). 

In predicting motions of floating structures, in view of the relevant natural periods, 



1.2.   WAVE MODEL 5 

interest commonly lies with either H+n (springing) or H~n (slow-drift) but not both. 

For example, in the case of the spar floating structure [10], the slow-drift forces and 

hence the difference-frequency components generally govern the global motions of the 

spar. In contrast, in the nonlinear wave problem both sum and difference frequency 

effects play a potentially significant role. Fortunately, unlike QTF values for wave 

loads on floating structures, which must be found numerically from diffraction anal- 

ysis, closed-form expressions are available for both the sum- and difference-frequency 

QTFs for second-order waves (e.g., [12,16]). Including the effect of a finite water 

depth d, for example, the sum-frequency QTF can be written as 

Qkmkn W,,,2  A. /,,2 _j_ ,,,   tl,  \ A. o  wmkl+u>mkl 
„+ tftf       iS^m + Un+ UmUn) + 2 UmWn(u,m+Un) 

in which the wave numbers kn are related to the frequencies un by the linear dis- 

persion relation u)\ = ^ifcntanh(A;nd). The corresponding difference-frequency transfer 

function, H~n, is found by replacing un by —un and kn by -kn. 

Because r)(t) is non-Gaussian, interest focuses on its skewness a3 and kurtosis a4. 

In terms of the significant wave height Hs = 4CT„, and peak spectral period Tp, these 

are predicted by a second-order wave model to be of the form: 

a»oJ = fai + 772)3 = m31(Tp)Ht + m^TjH? (1.6) 

(a4 - 3)aJ = (rn + Tft)4 = m42(Tp)H? + mu{Tp)H*9 (1.7) 
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The rriij(Tp) are "response moment influence coefficients," the contribution to re- 

sponse moment (cumulant) i due to terms of order 0(772). ^n general these coeffi- 

cients are conveniently calculated from Kac-Siegert analysis (Eqns. 12-15, [24,30]). 

We assume here the spectrum of 771(f) is of the form HgTpf(uTP), so that 771(f) scales 

in amplitude with Hs and in time with Tp. Such is the form, for example, of a 

JONSWAP spectrum. 

It is useful to define the unitless wave steepness Sp = Hs/Lp, in which the charac- 

teristic wave length Lp = gTpf'l'K uses the linear dispersion relation. Note that Sp is 

far less than unity and a second-order perturbation is performed by retaining terms 

only up to Sp. For deep-water waves the coefficients m,ij(Tp) are proportional to L~J, 

and they remain nearly so for finite depths as well. Retaining the leading terms in 

Sp from Eqns. 1.6-1.7: 

<*3 = k3Sp ;   a4 - 3 = kAa\ (1.8) 

In particular, for a JONSWAP wave spectrum with peakedness factor 7, we have fit 

the following £3 and k^ expressions to results for a wide range of depths [28]: 

h = f = 5.457-0084 + {exp [7.41 (d/Lp)1-22] - I}"1 (1.9) 
Jv 

h = SiLZl = i.4l7-°-°2 (1.10) 
a3 

The second term in this result for 03 reflects the effect of a finite water depth d: in 

shallower waters the skewness «3 grows, as the waves begin to "feel" the bottom. 

When comparing model predictions to data we will investigate the magnitudes of the 

omitted (second) terms in Eqns. 1.6, and 1.7. 

Note also that while the skewness is predicted to vary linearly with steepness, the 
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kurtosis is predicted from Eqn. 1.8 to vary quadratically with the steepness Sp. Since 

the steepness is far less than unity (squared steepness even smaller), this suggests 

that nonlinear effects will be most strongly displayed by the skewness, and hence by 

the wave crests rather than the total peak-to-trough wave heights. This second-order 

model may less accurately predict kurtosis, however, as higher-order omitted effects 

may be of the same order of magnitude. 

In the following sections, we compare predictions from the second-order random 

wave model to both wave tank data and ocean wave measurements. The comparisons 

are at the following three levels: 

• Section 1.3: Moments of wave time histories, skewness a3 and kurtosis 

a4 or coefficient of excess a4 - 3. We will first compare the predicted moments 

across a broad range of seastates in both the wave tank and the measured ocean 

data. 

• Section 1.4: Cumulative Distribution Functions (CDF) of wave ele- 

vations, wave crests and wave heights. These comparisons will demonstrate 

whether or not the second-order model is able to predict the CDFs, over and 

above predicting the third and fourth moments of the waves. 

• Section 1.5: Local Wave Parameters. This study investigates the ability 

of the model to predict local properties of the wave profile; e.g., marginal mean 

and standard deviation of a wave crest given a wave height, of wave period given 

a wave height and similar marginal moments of other local wave properties. 
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1.3    Comparison of a3 and a^: Data vs. Prediction 

Models 

In this section, we shall compare the predicted and observed skewness and kurtosis 

from two different data sets; one from a wave tank and one from the ocean. The wave 

tank measurements reflect wave histories with target Hs of 4m to 18m in approxi- 

mately 308m water depth [14,15]. We consider 18 wave tank histories each about 2 

hours long with a sampling frequency of approximately 0.42 seconds. When estimat- 

ing moments from the wave tank histories we process hourly portions and as a result 

have moments from 36 hourly time histories. The ocean wave histories are laser mea- 

surements at Ekofisk in the Southern North Sea in approximately 70m water depth. 

These measurements are for durations of about 18 minutes (2048 samples at time 

steps of 0.5 seconds) collected every 3 hours during the year 1984. From the annual 

data set, we select seastates with Ht above 4.5m and with skewness values between 

-0.05 and 0.4 from the Ekofisk data set. The Hs and skewness cutoffs are introduced 

to seek to filter out any "noisy" measurements. This resulted in selection of 132 time 

histories (each of about 18 minutes duration). 

Figure 1.2 shows comparisons of predicted skewness and kurtosis with the corre- 

sponding sample moments obtained from wave tank histories. Hourly segments of 

wave tank histories are processed to obtain estimates of skewness and kurtosis, and 

the predicted skewness and kurtosis are based on Eqns. 1.9 and 1.10. A linear regres- 

sion (with zero intercept) of observed skewness vs steepness yields an estimated slope 

of 4.97±0.12 (meanistd. error), close to the predicted slope k3 of 4.93 in Eqn. 1.9 for 

7 = 3.3. Note that the target 7 values for most of the wave tank tests were 3.3. The 
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effect of the depth-dependent (d« 308m) term in Eqn. 1.9 will cause only a slight in- * 

crease in the prediction and is neglected here. The seastate-to-seastate scatter aa3 in 

the observed skewness values is also consistent; the observed aa3 is found reasonably 

well-predicted by that from the simulated hourly segments of second-order seastates f 

(using WAVEMAKER [11]). The simulation is based on a fitted JONSWAP spec- 

trum for each of the hourly measurements. The simulated skewness values show a 

aas — 0.023, which is smaller than the observed am = 0.033 for the hourly segments 4 

of the measurements. The observed seastate-to-seastate kurtosis scatter a«4 in the 

hourly measurements is 0.11. In Fig. 1.2b, the mean regression slope of 4.96±0.33 for 

observed k4 is about 4 times the predicted k4 regardless of 7. This lends some support j 

to the view that the second-order model predicts the kurtosis value less accurately 

due to omitted higher-order effects [25]. 

Figure 1.3 similarly compares predicted «3 and 0:4 values to Ekofisk data. For the • 

predicted skewness and kurtosis values, we fit the JONSWAP spectrum parameters 

to each of observed time histories. Hs = 4CT„ where av is standard deviation of an 

observed history. T? and 7 are found from the measured Tz and 7\, the mean zero- 1 

crossing period and the central period, respectively, as shown below. Tz and T\ are 

found from measured spectral moments An = / fnS(f)df as 

Tx = y/Xo/X2;   T1=\0/\i (1.11) 

For a JONSWAP spectrum, we have fit these periods and 7 for a broad range of 

bandwidths 8, 

"fl^-f-®$ (L12) 

A quadratic regression form resulted in the following expressions, for a JONSWAP 

1 
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Figure 1.2: Skewness and kurtosis comparison for Snorre model test wave measure- 
ments and the second-order model 
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spectrum: 

7 = 45852 - 4235 + 96 (1.13) 

Tz/Tp = -0.002372 + 0.03727 + 0.68 (1.14) 

Tx/Tp = -0.002472 + 0.03537 + 0.743 (1.15) 

Using the fitted 7 (Eqn. 1.13), H„ Tp (from Eqn. 1.14), we predict skewness and 

kurtosis using Eqns. 1.9 and 1.10. 

For the Ekofisk data set, the slope of the observed trend on a3 is 4.24±0.14, 

while the above prediction scheme indicates a larger skewness trend of 4.92. Note 

the increase in observed scatter (<TQ3 = 0.06) in skewness compared to the wave tank 

data. This is due to the noisy estimate of skewness from the 18-minute samples 

compared to the hourly samples in the wave tank case. The observed trend for 

kurtosis (k4 = 1.03±0.61) is also quite accurately predicted by the second-order 

model (predicted k4 = 1.37), contrary to what we saw for the wave tank data. Again, 

the kurtosis scatter aa< has increased to 0.24 when compared to the hourly estimates 

for the wave tank data. 

The question is: why should the second-order model better match field data than 

the wave tank data when comparing kurtosis estimates? Recall that the wave tank 

data represents long-crested waves, while the field data probably represents short- 

crested sea conditions. The short-crestedness may likely cause a reduction in the 

nonlinearity in the waves at a point, due to the net effect of waves coming from 

different directions. In any case, it may seem that the second-order model generally 

underpredicts nonlinear effects, as seen in comparisons with the wave tank tests. The 

model prediction, on the other hand, seems better for Ekofisk data set; this may, 

however, be due to the effect of short-crestedness that leads to reduced nonlinear 
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effects in the measurements. 

Owing to the underpredicted kurtosis for wave tank data, it may be anticipated 

that the second-order model will most likely underpredict the "tails" (extremes) of 

the distributions for wave elevations, crest heights, and wave heights. On the other 

hand, for the Ekofisk data set where skewness and kurtosis are well predicted we may 

hope to find good agreement in predictions and measurements for the wave elevations, 

wave crests and wave heights. This is studied in detail in the next section. 

1.4    Comparison of Distributions of Wave Eleva- 

tion, Crest Height and Wave Height 

In this section, we compare the observed distributions of the wave elevation, crest 

heights, and wave heights to second-order simulations (using WAVEMAKER [11]). 

Comparisons of data to analytical or empirical distributions are also presented. A 

summary of the measured wave data sets follows. Figure 1.4 gives a schematic picture 

of the definitions of the wave parameters. Crest height is defined as the elevation above 

mean water level to the highest point between two adjacent mean level upcrossings. 

Wave height is the elevation difference from the highest to the lowest point between 

two adjacent mean-upcrossings. The other wave parameters will be discussed in 

Section 1.5. 

1.4.1    Summary of Measured Wave Data Sets 

We will compare model predictions to measurements across multiple data sets in 

order to study the generality of any conclusions made. We focus here on four wave 

data sets: (1) three 2-hour measurements representing the same seastate from the 
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Figure 1.4: Definition for wave parameters used in the comparison studies 

Snorre wave tank tests, (2) one 2-hour measurement again from the Snorre wave tank 

tests, but now representing another seastate, (3) fourteen 18-minute Ekofisk wave 

measurements representing similar climate conditions. The first data set is chosen 

because it reflects 6 hours of wave measurement for a severe sea (see Table 1.3). The 

second data set represents a less severe sea with a different steepness Sp. Out of the 

year-long Ekofisk measurement, we select time histories that have close H„ and Tp 

values and, generally, reflect a large Sp value. We present a summary of the three 

data sets in Table 1.1. 

Recall that the first two data sets are wave measurements in the wave tank taken 

in the absence of any structure. The waves in the wave tank are intended to be long- 

crested or unidirectional waves. The third data set is for ocean surface measurements 

taken by a down-looking radar. Since this a field measurement, we may not expect 

the waves to be long-crested. The model predictions that follow use only long-crested 

waves, because no short-crested information is available. The observed wave statistics 



1.4.   DISTRIBUTION COMPARISONS 15 

for these data sets are summarized in Table 1.2. Here, /i is the mean, a is the standard 

deviation, and "Min." and "Max." are the minimum and maximum elevations in the 

wave histories for the total durations given in Table 1.1. 

Of the three sets, the first data set shows the largest nonlinear effects:  largest 

skewness, kurtosis and maximum/cr values. The last column V2hiN is an estimate 

of the most probable Gaussian maximum (or —minimum—) value (normalized by 

a) in N cycles. We define the cycle count as N = Tdm/Tz (see Tables 1.1 and 1.3), 

where Tz is the mean zero-crossing period. In the first data set, note that the normal- 

ized maximum (max/a) is about 22% larger than the Gaussian extreme, while the 

normalized minimum value is about 13% smaller than the Gaussian minimum value. 

This is a manifestation of the nonlinearity (or skewness effect) that makes the crest 

(maximum) larger and troughs (minimum) smaller. Such nonlinear effects are also 

seen in the other two data sets, although to a lesser extent. The Ekofisk set, as noted 

earlier, shows the least nonlinear effects. The seastate steepness Sp also provides a 

measure of the nonlinearity to be anticipated in the histories, so we will next find the 

Hs and Tp parameters in order to find Sp. 

In order to use the analytic formulations of predicted a3 and a4 we fit JONSWAP 

spectrum parameters (the significant wave height H„, spectral peak period Tp, and 

the peakedness factor 7) to the measured spectrum for each of the data sets. In fitting 

the JONSWAP spectrum to measurements we choose Hs = 4<r and we tune Tp and 

7 so as to best fit the measured spectrum around the peak. The measured spectrum 

for each data set is found by averaging the spectrum across the different observations 

in each data set. For example, for the first data set, we average the spectrum of the 

three tests (504, 505 and 506) to find the final spectrum for this data set. For the 

second data set, we directly use the measured spectrum, while for the Ekofisk data, 
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we average across the 14 measured spectra to find the resulting spectrum used in 

fitting a JONSWAP spectrum. 

Table 1.3 shows the target (nominal) and observed JONSWAP spectrum param- 

eters in the wave tank tests. The observed Hs value for Set 1 seems to be different 

from the nominal Hs values (by about 5%), while observed Tp and 7 for Set 1 and 2 

seem to agree with the nominal values. For the ocean wave measurements, of course, 

we do not have any nominal values. A summary of the calculated mean zero-crossing 

period Tz and the central period Ti from the measured spectral moments (Eqn. 1.11) 

is also shown in Table 1.3. 

Table 1.4 gives the seastate steepness (based on the fitted Hs and Tp values) along 

with the predicted moments from Eqns. 1.9 and 1.10. We see excellent agreement in 

the skewness values for the wave tank data sets, however, as also pointed out earlier 

on average we underpredict the kurtosis values. Note also that that skewness is 

overpredicted by about 30% for the Ekofisk data set, when using the fitted skewness 

form in Eqn. 1.9. This leads to the question of whether accounting for the right 

spectral shape rather than using the fitted JONSWAP parameters would improve 

this prediction at all. 

To understand the impact of spectral shape on the predicted 0:3 and on esti- 

mates, we use a smoothed spectrum for each data set and predict the moments using 

the leading terms in Eqn. 1.6 and 1.7. The averaged spectrum that was used to 

fit equivalent JONSWAP spectra, contains thousands of frequency components and 

so a Kac-Seigert analysis that involves an eigenvalue analysis of the frequency com- 

ponents becomes prohibitive. We smooth the averaged spectrum across frequency 

components, so that the resultant spectrum contains only 256 frequencies. Although 

this smoothing might lead to some loss in the frequency resolution, we show that 
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the predicted moments will largely be insensitive to this smoothing. The last two 

columns (labeled "Smoothed Spectrum") in Table 1.4 are the predicted moments us- 

ing only the leading terms. A difference in these moments and those from the fitted 

JONS WAP reflects the impact of spectral shape on the predictions. The kurtosis 

estimates seem virtually the same across all three sets. For skewness, Set 1 shows 

about 8% reductions, while Set 3 shows about 5% reduction when using the mea- 

sured spectrum. When comparing these moments to the measured results, we find 

that using a smoothed measured spectrum instead of a fitted JONSWAP spectrum 

does not systematically improve the moment predictions in the three cases. 

We investigate next the magnitude of the omitted terms in Eqn. 1.6 and 1.7 for 

the above moment comparisons for the three data sets. We refer to the second- 

order prediction as "consistent" when considering only the leading terms in Eqn. 1.6 

and 1.7. The predictions where we included all the terms in Eqn. 1.6 and 1.7, is 

what we refer to as "exact" second-order predictions. Such predictions will describe, 

for example, the ensemble moments of simulated wave histories from a second-order 

analysis. These second-order simulated histories contain nonlinearities up to second- 

order reflected by both the terms in Eqns. 1.6 and 1.7. Table 1.5 compares the 

moments from a consistent to an exact second-order analysis for the three sets, using 

the smoothed spectrum in either case. Note that the exact a3 prediction is smaller 

than the consistent second-order estimate. This is because the higher-order term in 

Eqn. 1.6 gives a negative contribution to skewness [16]. The exact analysis gives 

on average a 10% reduction in skewness from a consistent second-order analysis. 

The kurtosis values appear to be almost the same in the two analyses, indicating 

insignificant contributions from the higher-order terms in Eqn. 1.7. 

To compare the CDFs of the wave elevations, crest heights, and wave heights we 
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simulate the first- and second-order wave time histories using WAVEMAKER [11]. 

The details of the resulting simulations are outlined in the following section. 
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Table 1.1: Summary information of the four wave data sets used in CDF comparisons 
of wave elevations, wave crests, and wave heights 

Set Description Water 
Depth (m) 

Sampling 
Frequency (sec) 

Duration 
Tdur (hours) 

1 Snorre    wave    tank 
data: Tests 504, 505 

308 0.424264 5.79 

2 
and 506 
Snorre    wave    tank 308 0.424264 1.93 

3 
data: Test 304 
Ekofisk     data     set 
(Year 1984) 

70 0.5 3.98 

Table 1.2: Observed statistics of the three (zero-mean) measured wave data sets. Note 
that these statistics have been estimated from the total durations (see last column of 
Table 1.1) of the data sets. 

Set 
1 
2 
3 

(m) 
3.358 
1.762 
1.285 

«3 

0.230 
0.154 
0.113 

a4 

3.263 
3.141 
3.012 

Min, (m) 
-11.33 
-6.047 
-5.280 

Max. (m) 
15.90 
7.944 
5.490 

Min./cr 
-3.374 
-3.432 
-4.109 

Max./cr 
4.735 
4.509 
4.272 

V2\nN 
3.881 
3.633 
3.883 

Table 1.3: Spectral parameters for the four wave data sets 

Nominal Spectrum Fitted JONSWAP Calculated 

Set #a(m) Tp(s) 7 Hs(m) Tp(s) 7 T*(s) TX (s) 

1 
2 
3 

14.1 
7.0 
* 

13.75 
12.0 

* 

3.3 
3.3 

* 

13.4 
7.048 
5.14 

13.75 
12.0 
9.8 

3.3 
3.3 
3.3 

11.16 
9.45 
7.62 

12. 
10.05 
8.21 
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Table 1.4: Predicted moments from fitted JONS WAP spectral parameters and from 
measured spectrum that has been smoothed 

Steepness Observed Fitted JONSWAP Smoothed Spectrum 
Set sv «3 a4 «3 «4 C*3 OCA 

1 
2 
3 

0.0454 
0.0314 
0.0343 

0.230 
0.154 
0.113 

3.263 
3.141 
3.012 

0.224 
0.155 
0.170 

3.07 
3.03 
3.04 

0.207 
0.153 
0.162 

3.06 
3.03 
3.04 

Table 1.5: Skewness and kurtosis predictions from a consistent second-order analysis 
vs. exact second-order analysis 

Steepness Consistent 2nd Ord. Exact 2nd Ord. 
Set sv <*z a4 "3 OLA 

1 
2 
3 

0.0454 
0.0314 
0.0343 

0.207 
0.153 
0.162 

3.06 
3.03 
3.04 

0.181 
0.141 
0.143 

3.07 
3.04 
3.04 
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Table 1.6: Number of simulations and durations (in hours) of each for the four data 
sets 

Set 
No. of 

Simulations 
Duration of 
1 simulation 

Total duration 
(hours) 

1 
2 
3 

20 
10 
50 

1.93 
1.93 
0.28 

38.6 
19.3 
14.2 

1.4.2    Summary of Simulated Wave Data 

The simulations of the first- and second-order histories for the four data sets are 

based on the measured spectrum of each. The time resolution and the duration of 

each simulated history are chosen to be the same as those for a single measured history. 

For example, for the first data set, each simulated history has a duration of 1.93 hours 

with a time resolution dt=0.424264 seconds; similarly, for Set 3 each simulated history 

contains 2048 points with dt=0.5 seconds. A summary of the number of simulations 

(Nsim) and total durations (Nsim x duration of 1 history) of the simulated histories 

is given in Table 1.6. The number of simulations is generally chosen so that the total 

simulated durations are longer than the total observed ones. The longer simulations 

are more likely to "fill in" the tails of the distributions and thereby offer a more robust 

comparison in the tails. 

In order to compare predicted moments to observed results from similar durations, 

we combine the simulated histories to replicate the total durations in the observed 

results. For example, in Set 1 we combine (concatenate) 3 histories into 1 and as 

result have 6 simulated histories each of duration 5.79 hours. Similarly, for Set 3 

we combine 14 histories into 1 and as a result have 3 histories each of duration 3.98 

hours. For Set 2, we do not need any concatenation since the observed history is itself 
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1.93 hours long. Of particular interest here, is the scatter in the maximum elevation 

of simulated histories of different durations. 

Table 1.7 summarizes the means and standard deviations of the simulated time 

histories. These means and standard deviations have been found for moments from 

the combined histories in each data set. For example, for Set 1 we estimate the 

moments for the 6 simulated histories each of duration 5.79 hours and then estimate 

the mean and standard deviations from these 6 values for each moment. Similarly, 

for Set 3 we find the mean and standard deviations of the moment from 3 simulated 

histories each of duration 3.98 hours. As Table 1.7 reports, the second-order a's are 

very close to the observed cr's in Table 1.2 indicating that the second-order corrections 

contribute insignificantly to the standard deviation of the process. 

As noted earlier, the simulated a3 and a4 values agree with the predicted moments 

from an exact second-order analysis in Table 1.5. The largest difference in case of Set 2 

is about 9% and this is within the simulated scatter (0.1289±0.0226). These simulated 

moments, when compared to the observed moments in Table 1.2, appear to be close. 

The largest discrepancy in a3 and 0:4 is seen in Set 1. We will investigate the impact 

of these differences between predicted and observed moments on the distributions of 

elevations, crests, and wave heights in the next section. 

1.4.3    Comparison of Wave Elevation Distributions 

We first study the comparisons of normalized wave elevation for data set 1, shown in 

Figure 1.5. The probability density function (PDF) of observed data is shown with 

±1 a bands on it. This scatter or sigma band of the probability density is estimated 

as [17]:   

scatter,a = ^^Z£) (1.16) 
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Table 1.7: Means and standard deviations of moments of simulated second-order 
histories for the four data sets. The standard deviation of the moments reflects the 
predicted scatter in the durations specified. 

Set Duration a (m) C*3 a4 Min. (m) Max. (m) 

1 5.79 Mean 
Sigma 

3.3830 
0.0411 

0.1815 
0.0140 

3.0393 
0.0760 

-12.7550 
0.8195 

15.0283 
1.1667 

2 1.93 Mean 
Sigma 

1.7612 
0.0874 

0.1289 
0.0226 

2.9855 
0.1093 

-6.0894 
0.8442 

7.1302 
0.9656 

3 3.98 Mean 
Sigma 

1.3060 
0.0285 

0.1397 
0.0132 

3.0923 
0.1412 

-4.9153 
0.1843 

6.4073 
0.5593 

where drj is the bin-width used, N is the total number of samples in the observation, 

and p is the estimated probability of being the bin. Note that 1/dt] is included to 

reflect a probability density scatter. The PDF of the second-order simulation agrees 

with observed results at almost all probability levels. Note the slight underprediction 

of elevations around ±3a levels. Such a comparison of the PDF plots offers indepen- 

dent comparisons across different elevation levels. The distinctly positively skewed 

nature of the observed PDF compared to standard Normal PDF <j>{u) in Fig 1.6 shows 

the non-Gaussianity of the observed elevations. This figure also compares analytical 

models for elevation distribution to data. Although, the Charlier series (see, e.g., [13]) 

using predicted moments from fitted JONSWAP spectrum (see Table 1.4) seems to 

agree here with the observed PDF over the range plotted, the demerits of this series 

approximation include (e.g., [27]): (1) for extreme elevations the PDF may become 

negative, and (2) it may show multimodal characteristics not inherent in observations. 

For example, in Fig. 1.6, the Charlier series shown on log scale could not be plotted 

below about -3.5a„ because the Charlier PDF is negative below this elevation value. 

The Hermite model [29] is a cubic transformation of standard Gaussian process 

based on the first four predicted moments. We present a simplified form of the Hermite 
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model applicable over a wide probability range for waves. This simplification results 

because the predicted kurtosis levels for the waves do not significantly affect the 

transformations, as a result we only need up to the quadratic term in the Hermite 

transform. At a given fractile, the standard normal variable u can be transformed to 

a non-Gaussian wave elevation level x in the simplified Hermite model as 

X = g{u) = T] + K0"„ u-\-—(u -1) ;    K = 1/v/l + a§/18 (1.17) 

in which rj is the mean wave elevation.   We will compare the predictions of this 

simplified model to the full cubic-transformation result, which is given as: 

x = g(u) = rj + Ka„ [u + c3{u
2 - 1) + c4{u

3 - 2u)] ;    K = l/y/T+24 + 6%   (1.18) 

Optimal values of c$ and c\ are found in order to minimize lack-of-fit errors in a3 and 

a4 [29], Fig. 1.7 compares the Hermite predictions to data, where the three Hermite 

predictions include: 

• simplified model (Eqn. 1.17) with predicted moments (labeled "Sim.Herm. w/ 

Pred.Mom."). Note that this prediction is labeled "Hermite" in Fig. 1.6. 

• cubic Hermite (Eqn. 1.18) with predicted moments (labeled "Cub.Herm.   w/ 

Pred.Mom.") 

• cubic Hermite (Eqn. 1.18) with observed moments (labeled "Cub.Herm.   w/ 

Pred.Mom.") 

This figure reports virtually no difference in the simple and cubic Hermite predictions 

using the predicted moments supporting the use of the simple Hermite when using 

prediction moments from the second-order model. The cubic Hermite model using 
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observed moments (from Table 1.2) improves the prediction, especially around -3.5a. 

Larger extremes have been shown in this figure, to emphasize the elevation difference 

likely to be seen when using observed or predicted moments in the Hermite predic- 

tions. The cubic Hermite model with observed moments appears to best match data; 

however, this model uses observed moments and requires that data be available to find 

the observed moments. A simplification would be to empirically relate these observed 

moments to the seastate parameters and use these in the cubic Hermite model. We 

propose that the simple Hermite model with predicted moments from second-order 

theory offers a convenient alternative to predict a broad range of wave elevations. 

Before we look at comparisons of the crest heights (the peaks of the elevation 

process), we will look again at the wave elevations on a different scale — the CDF 

or rather the exceedance probability 1-CDF. As seen in Fig. 1.8a, the exceedance 

probability permits comparisons of the cumulative effects of the process. The second- 

order simulation appears to agree, within the observed scatter, with the observed 

CDF out to 2<T„. We note a slight underprediction of the observed wave elevation, for 

example, of about 0.15a„ at 0.001 exceedance probability. This slight underprediction 

may have been anticipated in view of the underprediction of the observed kurtosis 

by the model. A Gaussian model underpredicts the observed wave elevations (see 

Fig. 1.8b), for example, by about 20% at 0.0001 exceedance probability and the 

(simplified) Hermite model (Eqn. 1.17) improves the agreement and offers a similar 

comparison as the second-order simulated result. There appears to be a discrepancy 

of about 7% (well within the observed scatter shown by error-bars) at the same 0.0001 

fractile. As noted earlier, using the observed instead of the predicted moments in the 

cubic Hermite transformation improves the agreement even in the large extremes. 



26 CHAPTER 1.  PREDICTION OF SECOND-ORDER WAVES 

Both the Hermite models: cubic and simple, however, seem to be within the error- 

bars of the observed CDF and are considered equally good predictors. Note that in 

the all the figures to follow, the predictions from the simplified Hermite model using 

the predicted skewness (from Eqn. 1.9) are labeled as "Hermite". A comparison of the 

second-order simulated crests and the simple Hermite predictions shows that these 

two seem to agree with each other quite closely at all shown fractiles. 

For the second data set, we similarly find the second-order wave elevations to gen- 

erally agree with the observed results (see Fig. 1.9). The underprediction of observed 

elevations in the tails seems to be within the observed scatter in the elevations. The 

Gaussian model systematically underpredicts the elevations (a discrepancy of about 

20% at 0.0001 fractile), while the Hermite model improves the agreement (i.e., the 

discrepancy is now within observed scatter). 

Finally, for the third (Ekofisk) data set, the second-order simulation and the Her- 

mite model appear to yield excellent agreement with observed wave elevations (see 

Fig. 1.10). The Gaussian underprediction also seems to be less severe as compared 

to the previous two data sets. Recall that this a field measurement where short- 

crestedness may cause a reduction in the nonlinear wave effects, so the second-order 

model, which underpredicts the long-crested waves, seems to better agree with the 

field data. Further investigations, however, have not been done to verify this hypoth- 

esis. 

Based on the wave elevation comparisons, we may anticipate the second-order 

model to best predict the Ekofisk crests, and possibly to slightly underpredict the 

wave tank crests. We will investigate this in the next section. 
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Figure 1.5: Normalized wave elevation PDF: Data vs. second-order simulations for 
Set 1 (Snorre wave tank data: Tests 504, 505, 505) 
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Figure 1.6: Normalized wave elevation PDF: Data vs.   analytical models for Set 1 
(Snorre wave tank data: Tests 504, 505, 505) 
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Figure 1.7: Normalized wave elevation PDF: Data vs. Hermite models. Elevation 
from simple Hermite model using predicted moments and cubic Hermite models using 
predicted and observed moments are shown. 
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Figure 1.8: Normalized wave elevation CDF: Data vs. second-order simulations and 
analytical models for Set 1 (Snorre wave tank data: Tests 504, 505, 505) 
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Figure 1.9: Normalized wave elevation CDF: Data vs. second-order simulations and 
analytical models for Set 2 (Snorre data set: Test 304) 
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Figure 1.10: Normalized wave elevation CDF: Data vs. second-order simulations and 
analytical models for Set 3 (Ekofisk data set) 
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1.4.4    Comparison of Crest Height Distributions 

The crest height comparison shown in Fig 1.11a for Set 1, shows that while the second- 

order model accurately predicts the small crests, it appears to underpredict the large 

observed crests. For example, at 0.001 fractile we find the model underpredicts crests 

by about 10%. The underprediction in crests heights seems more severe than the wave 

elevation prediction (see Fig. 1.8). An hypothesis is that the underprediction may 

be due to higher-order effects. This seems supported at least in the wave elevation 

case, where the agreement improves when including the observed moments in a cubic 

Hermite transformation. 

Fig 1.11b, which compares the analytical models to data, shows that the Rayleigh 

crest model given as Prob[Crest > c] = exp(-0.5(c/a,)2) from linear (Gaussian) wave 

theory, underpredicts the crests at almost all probability levels of interest (discrepancy 

of about 25% at the 0.001 fractile). The depth-dependent Haring et al [3] crest 

height distribution empirically fitted to observed ocean crest data, offers only a slight 

improvement (discrepancy of about 20% at the 0.001 fractile) over the Rayleigh model. 

The Haring distribution has been calibrated for a range of water depths less than 200 

meters. A similar form was also proposed by Jahns and Wheeler [8]; in this case the 

wave data comprised of shallow water storm wave records obtained in the Gulf of 

Mexico. The Haring et al exceedance distribution function is given as 

Prob[Crest > c] = exp[-0.5(c/a„)2]{l - 4.37(c/d)(0.57 - c/d)} (1.19) 

Finally, the Hermite model (a transformation of the Rayleigh crests using Eqn. 1.17) 

offers a closer fit to observed crests than the Haring distribution. The discrepancy 

(underprediction) now is about 13% at the same 0.001 fractile level. Note also that 
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the Hermite prediction agrees well with the second-order simulated crests (compare 

results across Figs. 1.11a and b. 

Fig. 1.12 shows similar results as in Fig. 1.7 where we had investigated the impact 

of kurtosis on the predicted elevations. We first look at the impact of omitting the 

predicted kurtosis in the crest prediction. Using analytic predicted skewness and kur- 

tosis (see Table 1.4 for actual values) in the cubic Hermite instead of just skewness in 

the simple Hermite prediction hardly changes the predicted levels; "Cub.Herm. w/ 

Pred.Mom." vs. "Sim.Herm. w/ Pred.Mom" are virtually the same in Fig. 1.12. 

Using the observed moments (see Table 1.2) in the cubic Hermite improves the agree- 

ment with observed crests; however, we still see some underprediction in the crest 

levels around 2 to 3 a,. This indicates that even including the correct kurtosis in 

the cubic Hermite prediction model may not yield perfect crest predictions, implying 

that other contributing effects may not be predicted exactly. An hypothesis is that, 

while the Hermite model (using observed moments) predicts the elevations quite ac- 

curately, it may still not be modeling the slopes or the velocities of the wave surface 

and thereby is unable to correctly predict the crests heights. Another hypothesis is 

that these long-duration wave measurements may be nonstationary. A way of inves- 

tigating this (not done in this study) may be to divide the measurements into smaller 

segments and then compare model predictions with observed results from these small 

segments, where presumably the wave conditions could be assumed to be stationary. 

The second data set, again, shows (see Fig. 1.13) similar crest comparisons as in 

the first set. The second-order simulation offers good agreement for the small crests 

and underpredicts the large crests (discrepancy of about 12% at 0.01 fractile). Of the 

analytical models, the Rayleigh distribution underpredicts the observed crests more 

severely (discrepancy of about 17% at 0.01 fractile). The Haring et al distribution 
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offers only a slight improvement over the Rayleigh crests, while the Hermite model 

offers slightly better agreement to observed results (discrepancy of 7% at 0.01 fractile). 

As anticipated for the Ekofisk data set, the second-order model agrees well with the 

observed crests (see Fig. 1.14). While the Rayleigh model underpredicts the crests, 

now both the Hermite and the Haring et al. models seem to agree with the observed 

crests at all probability levels. 

In summary, given that the wave tank data and the field measurements are ac- 

curate, we may conclude that while skewness is well-predicted in both types of mea- 

surements, the wave tank kurtosis is large than that predicted from a second-order 

model and the field wave kurtosis can be well-predicted by the second-order model. 

On the other hand, a hypothesis could be that the wave tank data is in "error" due 

to its limited ability to generate intended waves. This may be due to scaling issues in 

the wave tank tests or due to nonstationarity effects in the long measurements. One 

could on the other hand argue that the field tests may be in error due to measurement 

noise from the water spray or a direct comparison of field data to the model predic- 

tions may be inconsistent due to the presence of short-crested effects in the field data 

which we are not able to include in the second-order model predictions for lack of 

information on the directional spread. Recall a third source of error in the field data 

may be the pooling of the 18-minute histories across different measurements during 

the year. Further studies along these lines may help explain the differences in the 

measured results and the model predictions. 

We will next look at the model and observed wave heights; we expect any discrep- 

ancies to be less severe than seen for the crest comparisons. This expectation is due 

to the wave elevation being skewness rather than kurtosis-driven; because skewness 

effects both crests and troughs in compensating ways the wave heights tend, therefore, 
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to show less nonlinear affects than the wave crests alone. 
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Figure 1.11: Normalized crest height CDF: Data vs.  second-order simulations and 
analytical models for Set 1 (Snorre wave tank data: Tests 504, 505, 505) 
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Figure 1.13:  Normalized wave crest CDF: Data vs.   second-order simulations and 
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Figure 1.14:  Normalized wave crest CDF: Data vs.   second-order simulations and 
analytical models for Set 3 (Ekofisk data set) 
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1.4.5    Comparison of Wave Height Distributions 

Figure 1.15 compares model and observed wave heights for the first data set. The 

second-order model offers a closer agreement (within observed scatter) to observed 

wave heights than the corresponding crest height comparison. For example, at the 

same 0.001 exceedance probability, the second-order model now underpredicts the 

observed wave height only by about 6%. Recall the crest height underprediction 

at this fractile was 10%. Of the analytical models, the Rayleigh model, typically 

used for wave heights, is given as Prob[Height > h] = exp[-(h/an)
2/8], while the 

Forristall distribution [2], an empirical fit to observed ocean wave heights, is given 

as Prob[Height > h] = exp[-(h/av)
2-126/8A2]. The Rayleigh model seems to best fit 

the observed wave heights, while the Forristall distribution underpredicts the wave 

heights for this wave tank data. The simplified Hermite wave height prediction, which 

can now be a transformation of the Rayleigh crests and troughs to make heights, is not 

shown on the plot. The Hermite model finds the heights by transforming a Rayleigh 

crest and a Rayleigh trough at a desired fractile using Eqn. 1.17. The transformed 

crest and trough are added to result in the predicted height at this fractile. Note that 

in the simplified Hermite transformation the skewness shifts the crest and the trough 

in the same way so that the wave height remains identical to the Rayleigh height (= 

Rayleigh crest plus Rayleigh trough). A cubic Hermite transformation that includes 

the kurtosis effect increases the crest heights and the trough depths depending on the 

kurtosis magnitude. For kurtosis larger 3, this may only lead to larger wave heights 

than the Rayleigh distribution. Since the predicted kurtosis values are small, using 

these in the Hermite model may not significantly affect the wave height results. We 

choose, therefore, to not show the Hermite wave height model in the comparisons. 

A comparison of the wave heights (Fig 1.16) for the second data set offers similar 
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conclusions as the first data set. The second-order simulation offers good agreement 

for the small heights and slightly underpredicts the large heights. Of the analytical 

models, the Rayleigh distribution agrees well with observed wave heights. Finally, 

the second-order model and observed wave heights agree well for the Ekofisk data set 

(see Fig. 1.17). Now, however, the Rayleigh model slightly overpredicts the observed 

heights, and the Forristall distribution agrees well with the Ekofisk heights. 

• 
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Figure 1.15: Normalized wave height CDF: Data vs. Second-order simulations and 
analytical models for Set 1 (Snorre wave tank data: Tests 504, 505, 505) 
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1.5    Comparison of Local Wave Statistics 

In this section we compare conditional distributions of local wave parameters. Fig- 

ure 1.18 defines the local wave parameters to be studied in this section. Crest front 

period TCF is the period from a mean-upcrossing to the time of occurrence of the 

highest point in a crest. Crest back period TCB is similarly defined as the period be- 

tween the highest point in a crest to the following mean-downcrossing. Crest period 

Tc is the sum of TCF and TCB and is the period between a mean-upcrossing and the 

following mean-downcrossing in the wave. The wave period TV, finally, is the period 

between the two mean-upcrossings in a wave. 

We will compare the conditional distribution of the local wave parameters from 

the second-order model to data. We will demonstrate these comparisons with the 

first wave data set that represents the Snorre wave tank measurements. We will first 

look at the conditional distribution of a wave's crest height given its wave height. 

Figure 1.19 shows the conditional mean and standard deviation of the wave crest 

given a wave height for the first- and second-order simulated histories and measured 

data. The Gaussian (first-order) simulation, of course, shows that the crest heights 

are on average half the corresponding wave heights. The data shows systematically 

larger crests conditionally, given the corresponding wave height. The second-order 

model is found to predict this conditional vertical asymmetry quite accurately. Note 

that even though the model slightly underpredicts the marginal distributions of the 

crests and of the wave heights, the conditional crest mean and standard deviation 

seem accurately predicted. 

We next consider the horizontal asymmetry in the waves. Figures 1.20 and 1.21 

compare Tc to Tw, and TCF to Tc, respectively. As may be expected, the first-order 

and second-order simulations do not indicate presence of any horizontal asymmetry. 
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As seen in the figures, Tc is approximately half of Tw. Similarly, TCF is approximately 

half of Tc. No horizontal asymmetry can be found in the observed data either, 

indicating that the first- and second-order simulations are statistically equivalent to 

the observations as regards horizontal asymmetry. 

Figure 1.22 shows the conditional distributions of wave periods given crest heights 

for data, first- and second-order simulations. This figure shows the conditional median 

along with 16- and 84-percentile spread of wave periods given crest heights. All results 

show the same trend of increasing wave periods for small to moderate crest heights, 

and constant wave periods for large crest heights. The asymptotic wave period is close 

to the central period obtained from the first moment of the wave spectrum (in this 

case the central period is about 12 seconds, Table 1.3). Figure 1.23 shows a similar 

comparison of conditional distribution of maximum of TCF and TCB in a wave vs. 

the crest height of the wave. This is again shown as the conditional median with 16- 

and 84-percentile scatter of Max.(TCF, TCB) given crest heights. Such statistics are 

of interest, for example, in identifying the large high-frequency resonant ("ringing") 

responses that may be observed in offshore structures. Again, all results show the 

same trend of increasing periods for small crests and a gradual asymptote period for 

large crest heights, with the second-order model offering a slightly better agreement 

to data. The asymptotic maximum of the crest front and back period for large crest 

heights is about 25% of the central wave period. 

• 
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Chapter 2 

Identification of First-Order Waves 

In ocean engineering practice it is common to assume the waves to be Gaussian 

when estimating forces on large volume structures and any nonlinearity in the waves 

is embedded in the structural response analysis (e.g., [26]). It has been shown in 

this chapter that observed time histories generally contain nonlinearities, it is thus 

imperative to remove any second-order effects in the incident waves so that these 

effects are not double-counted in the resulting response estimation. Recent studies 

([23]) have demonstrated the impact of double-counting such second-order effects on 

various structural response characteristics. We demonstrate this issue further in the 

study on the spar floating platform [10]. 

The methodology to identify the underlying first-order waves is to seek the implied 

first-order wave history which, when run through the second-order wave predictor, 

yields an incident wave that agrees with the target observed history at each time 

point. This identification is performed using a Newton-Raphson scheme to achieve 

simultaneous convergence at each complex Fourier component. If the observed his- 

tory has N components, we iteratively solve N simultaneous nonlinear equations to 

51 
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identify the first-order components. The next section details the methodology of this 

identification scheme. 

2.1    Methodology 

The idea here is to identify the implied first-order history rji(t) (of an observed history 

r)obs(t)) which, when Tun through the second-order predictor, yields an incident wave 

that agrees with rjo^t). The reader is referred to [11] for details on the algorithm. 

In the first-order wave process 771 (i), see Eqn. 1.2, written as a Fourier sum of N 

frequencies, 
N/2 N 

Vi(t) = £ A* cosM + 6k) = £ X*e**« (2.1) 
/fc=l k=l 

we need to identify only the lower half Xk components, since the upper half values 

are complex conjugates of the lower half. Let us denote Xk = Uk + iVk, where Uk, Vk 

are the real and imaginary parts of the complex Fourier component Xk, respectively. 

The predicted second-order wave process (see Eqn. 1.4) as evaluated from the 

QTFs is 

N/2 N/2 

AifcW = 2Re £ £ XmXnH^^^ + X^H^fü**^-*        (2.2) 
m=ln=l 

This may be rewritten in the form of a Fourier sum as 

Ai&W-Ene*** (2.3) 

where Yk = Yk
+ + Yk~ are the combined sum and difference frequency components. 

Here again, Yk possesses conjugate symmetry so that only the lower half contains 
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unique information. Yj^ can be shown to be 

m+n,k 

=     E  [(UmUn-VmVn) + i(VmUn + UmVn)]H+n (2.4) 
m+n,k 

where the summation symbol indicates a double summation 

N/2 N/2 

J]    =EE       SUCn that u)mJf^n = Uk (2.5) 
m+n,k       m=l n=l 

and 

m—n,fc 

=       E   [(^m^ + V^^ + i^C/n-C^K)]^^ (2.6) 

where 
N/2 N/2 

E    =  E E       SUCh that I'*'"« ~ W»l = <*>* (2-7) 
m—n,fc       TT»=1 n=l 

The combined predicted wave process is 

W^^iW + ATftW (2.8) 

The identification scheme strives to simultaneously match f]pred(t) to the observed 

wave history r)0bs(t) at every value of t. Alternatively, we can perform the identi- 

fication in the frequency domain and strive to simultaneously match the predicted 

Fourier components to the observed Fourier components at all frequencies. 
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Wöbs(t) can be represented in the frequency domain as 

N 

£ wo = £ z^kt (2.9) 

where Zks also possess conjugate symmetry. If the first-order components are iden- 

tified exactly, from Eqn.s 2.1, 2.3 and 2.9 we will have 

Zk = Xk+Yk   ;   for all A: = 1... JV/2 (2.10) 

Note that the upper half values can be obtained from conjugate symmetry of the 

lower half values. In the Newton-Raphson identification scheme we will try to simul- 

taneously minimize Xk + Yk - Zk; for k = 1... N/2 to achieve convergence. Now, this 

scheme requires a Jacobian of Xk + Yk — Zk with respect to the unknowns Xjt-such a 

complex differentiation will lead to numerical discontinuities so we will minimize an 

equivalent real function yfj2i fl/N instead, where for k = 1... N/2 

fk   =   Re(Xk + Yk-Zk) 

fk+N/2   =   Im(A"jfe + Yk- Zk) (2.11) 

The identification of the lower half Xk values requires a simultaneous solution of 

the nonlinear equations in 2.11 such that fk -► 0 for all k = 1 N,or alternately 

\Jl2i fk/N -► 0- We will formulate the Newton-Raphson scheme in vector form as 

(2.12) " ReX " + 
" ReY " 

— 
' ReZ " 

ImX ImY ImZ 

where bold face letters denote vectors, and vectors X,Y,Z contain the complex 
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Fourier components Xkl Yk, Zk, k = 1... N/2, respectively. Here, [-^-] is a vector 

containing the real part of X in the upper half and the imaginary part of X in the 

lower half. 

Let us denote 

A = 

B = 

C   = 

' ReX " 
ImX 

' ReY ' 

= 
" U ' 

V 

ImY 
ReZ 

(2.13) 

ImZ 

Note that the vector A, of length N, is constructed such that lower half values 

are the real parts of Xk; k = 1... N/2 and the upper half is the imaginary part 

of Xk; k = 1... N/2. Similarly, B and C, each of length N, contain real and 

imaginary parts of the lower half of the second-order correction and the observed 

Fourier components, respectively. The elements of A and B are denoted by at and 

bk, respectively, where l,k = l...N. The objective function in vector notation now 

is 

f(A) = A + B-C (2.14) 

A first-order Taylor approximation of f (A) about a given A(0) is 

f(A) = f(A<0>) + [J](A-A<0)) (2.15) 

where [J] is a NxN Jacobian matrix denoting the derivatives of the elements fk in 

vector f (A) with respect to each of the unknowns ai in A where k,l = l...N. The 
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Newton-Raphson scheme at iteration p + 1 is then formulated as 

A(P+I) = A(P) + h (2.16) 

where h, a vector of length TV, is found from a Cholesky decomposition followed by 

a back-substitution scheme from 

[J]h = -f (AW) (2.17) 

It can be easily shown from Eqn. 2.14 that the entries Jk,t of the matrix [J] are 

where dbk/dai indicates the partial derivative of 6* with respect to a/, and 

/ 

Ski = < 
1   if A: == / 

0   otherwise 
(2.19) 

To find dbk/dai, recall from notation in 2.13 

bk = ReYk     and     bk+N/2 = Iml*    for k = 1... N/2 

at = ImXi = Ui     and     aj+Ar/2 = ImAT/ = Vt    for / = 1... AT/2 

so that from Eqn.s 2.4 and 2.6 we have 

^JSEr    =       E   Wm/ + £Wn«)^n +    E   (%** + %Al) #m, 
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dReYk 
dVi 

dImYk 

dUi 

dlmYk 

dVi 

Schematically, 

E  -(VnSmi + Vm5nl)H+n+   E   (Vn6ml + Vm5nl)H-n   (2.20) 
m+n,k m—n,k 

E  (VmSnl + VnSml)H+n+  E  (VmSni-VnSml)H-n 
m+n,k tn—n,k 

E  (Un6rnl + Um6nl)H+n+  E  (UJmi-UmSnl)H-n 
m+n,k m-n,k 

[j\ = m+ 

where [I] is the identity matrix. 

2.2    Verification 

dReYk 

dU, 

dUi 

dReYk 

dV, 
c>lmh 

dVi 

(2.21) 

2.2.1    Identification of components for simulated data 

The simulation of second-order waves and the identification of the first-order waves 

have been implemented in the WAVEMAKER software [11]. We simulated a second- 

order wave history whose first-order component is characterized by a JONSWAP 

spectrum with H„ = 12 m, TP = 14s and 7 = 3.3 in 70 m water depth. We used the 

net second-order simulated history and tried to identify its first-order wave component 

using the above-mentioned methodology. A successful idenfication is implied if the 

identified first-order component matches the input first-order time history time point 

by time point. 

Figure 2.1 shows the wave spectrum of the simulated history and the identified 

first-order spectrum along with the corresponding second-order wave spectrum. We 

see that small second-order contribution to the power spectrum, roughly a decade 
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below the first-order spectrum even at frequencies twice the peak spectral frequency, 

suggests the difficulty in identifying these components. Figure 2.2 shows the net sim- 

ulated wave history and the identified first-order wave history in cycles around the 

maximum crest height. We next compare the identified first-order wave history to 

the input first-order history for simulation in Fig 2.3. The identified first-order com- 

ponent is almost the same as the underlying (input) first-order component indicating 

a successful identification of the components of a wave history. 

2.2.2    Idenfication of components for wave tank data 

As another example we will identify the underlying first-order wave component for 

the Snorre wave tank history (Test 504) that reflects a water depth of about 308m. 

Figure 2.4 shows a portion where the maximum crest height occurs in the measured 

wave tank history. The figure also shows the identified first-order and the correspond- 

ing second-order wave histories. Note how the second-order wave component affects 

the first-order peaks, amplifying the crests and moderating the troughs. Figure 2.5 

shows the wave spectra for the measured history along with the first-order and the 

second-order spectra. Note that the second-order energy is significantly smaller (even 

at twice the peak spectral frequencies) than the first-order energy; it is the phase 

locking of the first- and the second-order components (Fig. 2.4) that leads to larger 

crests and flatter troughs. 
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Chapter 3 

Conclusions and Recommendations 

We applied second-order random wave models to investigate the nonlinearities in 

measured waves (for both wave tank data and ocean field measurements). We found 

that the second-order model predictions compared well with wave tank results and the 

agreement was even better in the case of field measurements. We proposed convenient 

analytic formulations for skewness and kurtosis of waves from second-order theory as 

a function of the wave environment parameters (HS,TP, d) characterizing the climate 

conditions and the water depth at the site of interest. We also proposed simple 

analytic crest height distributions based on these predicted moments and found these 

predicted distributions to compare closely with the measured results. This analytic 

distributions can also serve as a convenient alternative to simulating second-order 

wave crests. 

We developed a computer program to simulate second-order nonlinear waves. 

Given a measured time history, this program can also identify the underlying first- 

order wave component which when run through the second-order predictor produces 

a resultant time history that agrees with the measured history at every time point. 
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This feature is especially useful in performing second-order response analysis using 

measured waves where the input waves are assumed to be Gaussian. 

In order to test the limitations of the second-order model, we suggest comparison of 

model predictions across more severe climate conditions. We found that while the field 

results were well-predicted, the wave tank crest heights seemed to be underpredicted 

by the second-order wave model. A more detailed investigation of the wave tank 

data may help explain these results. Recall that the wave tank data comprised of 

2 hour measurements and a hypothesis is that these measurements are long enough 

to be nonstationary. A way to confirm this hypothesis may be to investigate shorter 

segments of the 2 hour histories and compare model predictions to measured statistics 

from these smaller segments. As pointed earlier, scaling down of the waves in the tank 

may also be a source of error, particularly so when generating waves in severe storms. 

For the wave tank data, we found that the prediction of the marginal PDF of 

the wave elevations was in closer agreement with the measured results than the wave 

crest predictions. This may suggest that the discrepancy, in the wave elevation does 

not explain the larger discrepancy in the wave crests. A discrepancy, if any, in the 

comparisons of the upcrossing rates or the velocities of the second-order simulated 

histories to the measured results may help explain the larger discrepancy in the crest 

heights. 

We found that the cubic Hermite model (using observed moments) slightly un- 

derpredicts the crest heights in the two to three av range even though it quite accu- 

rately predicts the elevations for the wave tank data. Note that the Rayleigh crests 

are transformed in this Hermite prediction and consequently assumes an underly- 

ing narrow-band process. We could, instead, simulate corresponding Gaussian waves 

from the measured spectrum in an attempt to reflect the measured bandwidth; and 
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transform the Gaussian elevations at every time point using the cubic Hermite model 

with moments of the measured history. A comparison of the crest distribution of 

this transformed history with the observed crest results will indicate the impact of 

bandwidth effects on the crest height distribution. Note here that we are attempting 

to preserve both the observed moments and the observed bandwidths. 
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